
Enabling Trust on the Blockchain

Dr. Jamsheed Shorish∗

October 20, 2017

1 Overview

At first glance the idea of implementing a trust process for a contract that has been

coded within a blockchain may seem superfluous, as the idea of a smart contract is to

eliminate the need for contract validation, verification of terms, necessity of audit, or

other trust enabling tools.1 Design challenges are actively discussed in smart contract

development,2,3 but there is a widespread feeling in the development community that

once a smart contract has been ‘correctly’ designed, further intervention is unnecessary.

However, in practice there is a wide scope for traditional validation, verification and

auditing functions whenever tangible assets (such as fiat money, real estate, financial

assets and their derivatives etc.) are affected by blockchain-encoded outcome paths,

irrespective of whether or not the contract has been ‘correctly’ designed. One reason for

this is straightforward and involves what one might categorize as a human tendency to

feel loss more strongly than gain:4

A party will seek redress when an adverse outcome they subjectively ascribe a

low (or no) probability of occurring actually happens, and the outcome has a

large negative effect on the stock of that party’s tangible assets.

∗Shorish Research white paper 10/17a. Shorish Research provides strategic consulting services built
upon academic and real-world application expertise in the area of Computational Business.

1See e.g. Blockgeeks’ article “Smart Contracts; The Blockchain Technology That Will Replace
Lawyers”, accessed 19 October 2017.

2See e.g. Ethereum’s Solidity documentation for a discussion of smart contracts built upon the
Ethereum blockchain platform.

3Vitalik Buterin, “Blockchain and Smart Contract Mechanism Design Challenges”, First Workshop
of Trusted Smart Contracts, April 2017 (slides).

4An example is prospect theory (Kahneman and Tversky, “Prospect Theory: An Analysis of Decision
Under Risk”, Econometrica vol. 47 no. 2, pp. 263-291).

1

http://shorishresearch.com
http://shorishresearch.com
https://blockgeeks.com/guides/smart-contracts/
https://blockgeeks.com/guides/smart-contracts/
http://solidity.readthedocs.io/en/develop/introduction-to-smart-contracts.html
http://fc17.ifca.ai/wtsc/Vitalik%20Malta.pdf

A classic example is an insurance contract, where the type of loss insured and the

probability of loss together determine the probability of acceptance of a claim, after

a particular loss has occurred. If a low probability event such as a hurricane causes

catastrophic loss, the causative factors contributing to such loss (e.g. wind, flood) may,

when the contract is interpreted during a claim, be excluded from the type of loss specified

in the contract.5 Nevertheless, the contracting party suffering the loss will still attempt

to seek redress, because the scale of the catastrophe (e.g. the complete destruction of a

domicile) carries a high quality-of-life penalty.

Another example concerns “flash crashes”, defined as asset market movements which

are triggered from algorithmic corrections leading to precipitous changes in prices over very

short time intervals (an example is the May 2010 US stock market crash-and-recovery).

Although in principle investors are aware of “the rules of the game” when investing and

recognize the potential for steep losses (and potentially large gains) as a result of asset

price changes, these changes are not efficiently priced into asset valuations when high-

frequency trading is responsible for ex ante low probability, but high volatility, price

movements. As a result, there is scope for seeking redress in such situations (using e.g. a

class action lawsuit mechanism6).

This is also why outcomes which are by definition assumed to be unpredictable by

everyone often motivate parties to include indemnification against such outcomes (e.g.

‘Act of God’ contract clauses), which both parties state are outside of the controllable

circumstances of the contract but nevertheless impact the distribution of tangible assets.

Without such unanimity, however, contracts which depend upon (and presumably price)

low probability events that significantly change the distribution of tangible assets for one

party are subjectively more likely to be construed as ‘unfair’ ex post of such events, and

hence are more vulnerable to adjudication.

There is also a second reason why trust tools such as validation, verification and

auditing functions will be necessary in the near future to ensure that blockchain-encoded

contracts can be written:

One or more parties will seek redress if there is a sufficiently large wedge driven

between the intent of a contract and its actual outcome, and that outcome

significantly impacts a party’s tangible assets.

An important example of this within the blockchain ecosystem is the destruction of

‘The DAO’, a Decentralized Autonomous Organization (hence the name) launched at

5Chris French, “Hurricanes, Fraud, and Insurance: The Supreme Court Weighs in on, But Does Not
Wade Into, the Concurrent Causation Conundrum in State Farm Fire and Casualty Company v. Rigsby”,
165 U. Pa. L. Rev. Online 99, 2017.

6Tara E. Levens, “Too Fast, Too Frequent? High-Frequency Trading and Securities Class Actions”,
The University of Chicago Law Review vol. 82, no. 3, pp. 1511-1557, 2015

2

the end of April 2016 as a smart contract on the Ethereum blockchain infrastructure.7

The original intent of The DAO was to serve as an investment vehicle along the lines of

Kickstarter. After raising c. USD 150 million in the first month of its inception, in June

2016 an anonymous user was able to execute part of The DAO’s smart contract code

to expropriate cybercurrency (Ethereum’s ‘ether’) worth approximately USD 50 million,

which was then held in a second smart contract that the user owned.8

The event precipitated a major schism within the Ethereum community, when the

developers of Ethereum decided to change the smart contract of the The DAO to be able

to return all of the invested funds to the original investors. Although this was presented by

the developers and much of the community as ‘the right thing to do’, as it was ‘clear’ that

the intent of The DAO as an investment vehicle had been divorced from its execution (viz.

the movement of USD 50 million to the account of a single user, without an associated

project), a significant part of the community disagreed. They stated, rather, that since

the anonymous user had used The DAO’s smart contract programming code as it was

written, in the end the expropriation was in fact part of the set of outcomes that The

DAO as a smart contract had provided–irrespective of whether the original writers of The

DAO were aware of it. In other words, according to this view the smart contract itself had

not been compromised, and its programming code did what it had been programmed to

do, regardless of intent. Proponents of this perspective hold that normative judgements,

such as whether or not a contract’s execution or outcome was ‘wrong’, should remain in

the province of the legal system.9

When the smart contract of The DAO was changed to return investor stakes (via a

‘hard fork’ of the Ethereum blockchain), Ethereum split into two blockchains: Ethereum

with the new contract and recaptured investor funds (“Ethereum”), and the original

Ethereum blockchain protocol, which contained the old contract and its own cryptocur-

rency (“Ethereum Classic”). As of this writing both blockchains are in existence and their

cryptocurrencies are trading with value–note that in Ethereum Classic, original investors

in The DAO did not fully recover their funds and the expropriated funds remain available

to the anonymous user, albeit in a new currency.

This Overview serves to illustrate that the development of contracts on the blockchain

does not obviate the need for trust tools–in fact, it may be argued that the contrary holds

true, as this novel decentralized environment speaks to the need for a careful representa-

tion of trust and validity on the one hand (as demonstrated above), while preserving the

efficiency gains that blockchain is expected to provide in the future on the other. This

balance between trust and efficiency implies that the main challenge will be to develop

7See e.g. Richard Waters, “Automated company raises equivalent of $120m in digital currency”,
Financial Times, May 17, 2016.

8Phil Daian, “Analysis of the DAO exploit”, HackingDistributed (blog), June 18, 2016.
9Arvicco, “Code is Law and the Quest for Justice”, Ethereum Classic Blog (blog), September 9, 2016.

3

https://ethereum.org
https://ethereumclassic.github.io
https://www.ft.com/content/600e137a-1ba6-11e6-b286-cddde55ca122
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit
https://ethereumclassic.github.io/blog/2016-09-09-code-is-law

and implement trust tools that extend traditional trust services to the blockchain ecosys-

tem in as ‘non-disruptive’ a fashion as possible. In the remainder of this white paper we

outline some of suggested requirements for validation, verification and auditing tools to

be developed for, on and off the blockchain.

2 Validation: defining a contract on the blockchain

A smart contract defined on the blockchain first needs to be in a standardized format, so

that disputes cannot focus on the form of the contract–this is a minimal requirement for

a contract to be implementable. Contracts on the blockchain can be written in a variety

of manners, each of which ‘compiles’ (i.e. is made machine-readable, to be executed as a

running piece of code) to provide the same functionality.

Assuming for the moment that such an unambiguous formatting of a contract onto the

blockchain is possible,10 then validating a contract is as “simple” as ensuring the compiled

code runs as intended. This means, in particular, that:

• the code should not contain syntax errors, i.e. errors that will prevent compilation;

• the code should not contain runtime errors, i.e. errors that will occur during

execution;

• the code should not contain side effects, i.e. legitimate execution which does not

contain syntax or runtime errors, but which nonetheless leads to outcomes that are

not intended or desired;

• the code should pass all tests, where a test is a preconfigured scenario that includes

the desired outcome–the code is run against the test, and if the code outcome

matches the desired outcome, the code passes the test.

Naturally it is important to describe what is meant by e.g. ‘side effects’, and the test

suite should encompass (ideally) all use cases, or all expected use cases up to a certain

probability, while (again, ideally) removing all undesirable side effects from the code.

Specifying the proper test suite requires a high degree of experience and is often more

art than science. It can be difficult for complex code, but automated software exists to

assist in testing and can be leveraged to help prevent the kind of unintended behavior

demonstrated by The DAO’s smart contract.

Validating a contract is perhaps the most logical application of trust tools to a

blockchain contract–for example, validation allows the creation of insurance contracts on

10Disclosure: Shorish Research is actively developing such a lexicon for ‘translating’ in-real-life con-
tracts to smart contracts.

4

the blockchain, where an insurance smart contract can be used to transparently indicate

when claims are filed, approved and paid, improving the efficiency of the claims process

while reducing the scope of fraud. In this sense the blockchain acts as a decentralized

repository for a contract’s details, fiduciary responsibilities, and transactions structure

which, once registered on the blockchain, is immutable.

3 Verification: executing a contract on the blockchain

Actually executing a smart contract leads to verification of the outcome–a validated

contract will execute under the conditions it has been defined to wait for, where such con-

ditions are both user-generated (e.g. a claims submission for insurance) and externally

generated (e.g. a derivative that exercises upon a terminal date, or upon an underlying

reaching a strike price). In the latter case there must be an infrastructure in place to

credibly report applicable market conditions in order to execute a smart contract that

relies upon them–such infrastructure is called an ‘oracle’ in the blockchain literature, and

may be provided by software or by dedicated (tamper-proof) hardware.11 Part of ver-

ifying the execution of a smart contract, then, relies upon 1) the existence of such an

oracle, and 2) the consensus among users that the oracle is truthfully revealing external

information, so that data cannot be manipulated to the benefit of a contracting party.

Defining, implementing and maintaining oracles thus occupies the intersection of decen-

tralized and trusted third-party verification of external conditions, and it appears to be

an open question whether smart contracts that rely upon oracles will always contain some

form of centralized (i.e. third party authority) dependence as a result.

One may also harness the blockchain itself for verification of the execution of a contract.

This uses the fact that the blockchain is a ledger that records both the user-generated

and externally generated conditions and the transactions that result, and there is no

scope for tampering with the condition-to-transaction causality because such a recording

is immutable. While this cannot control for the existence of fraud ‘off-chain’, i.e. before

the blockchain has been accessed, it does minimize the scope of such fraud because of

the validation step performed earlier–recall that in that step all contract participants and

contract stipulations were vetted and included in the blockchain.

Finally, if off-chain fraud is suspected, the immutable nature of the recording of user

and external conditions serves to provide the factual basis for further investigation–the

blockchain records the actual sequence of events and thus eliminates the risk of a fraudu-

lent party obfuscating the link between conditions and transactions (by e.g. a ‘cover-up’

of the path from, say, false data fed to the smart contract, and the resulting transaction).

11See e.g. Eric Larchevêque, “Hardware Pythias: bridging the Real World to the Blockchain”, Ledger
(blog post), August 31, 2016.

5

https://www.ledger.fr/2016/08/31/hardware-pythias-bridging-the-real-world-to-the-blockchain

In each of these verification steps–the oracle subsystem, on-chain verification using

the immutability of the blockchain as a ledger, and using the blockchain to verify claimed

off-chain external conditions–trust tools must be developed and implemented in a way

that all sides of a contract agree are transparent and perform as intended.

4 Auditing: following trust along the blockchain

Auditing a contract usually involves mapping out the chain of events from the contract

inception to its outcome (or set of outcomes), ensuring that every step along the way

conforms to the accepted best practices and legal requirements for the type of contract

under consideration, while ensuring that double-spending along the (potentially long)

sequence of transactions is not performed. Auditing is not just a method of detecting

fraud or ‘cheating’ on the contract–rather, it allows both parties to ensure ex post that

the contract was implemented and executed according to the intent and expectation of

each party, and serves as an important signal of trust for repeated interaction between

the contracting parties.

A smart contract on the blockchain simplifies the auditing process by virtue of

• the clear and transparent chain of transactions that a contract creates, which are

themselves part of the blockchain and are thus immutable (as described earlier).

This forms the basis for consensus between contract parties that actual events have

taken place. This in turn reduces the chance of dispute and hence lowers the cost

of dispute resolution as a result of (or during) an auditing process.

• the widespread use of automation to execute contract outcomes, when coupled with

user generated and externally generated input (via an oracle). Verification of the

automated procedure itself is a form of ‘pre-auditing’ and may be used in the audit

step to confirm that the contract is performing as intended. Again, this also ensures

that one or more parties cannot claim that the terms of a contract have somehow

been changed (which changes the contract outcome), because the terms have been

encoded in the blockchain and are immutable.

• the design of the blockchain itself, that prevents double-spending from occurring.

Although a smart contract may contain code that permits an unintended transfer

of resources (as happened with the The DAO, cf. the Overview), the blockchain’s

record of transactions remains viable precisely because it prevents double-spending

in essentially every situation.12

12The ‘51% attack’, in which a user or cartel of users control more than half of the computing power
to validate blocks in a blockchain, is one way to subvert the prevention of double-spending. But the

6

5 Concluding remarks

There is very little time to wait before trust tools become necessary for blockchain con-

tracts. It is true that the current government regulatory structure has not delineated the

full procedural workflow for managing blockchain contracts or the resulting transactions

(questions such as “Are transactions on the blockchain taxable?” or “Is an Initial Coin

Offering a securities launch?”13 remain open). This may incline one to adopt a ‘wait and

see’ attitude, relying upon government agency to act as a leader and pathfinder toward

addressing regulatory hurdles. To do so, however, relinquishes the initiative that tradi-

tional trust and relationship accountancy and consulting organizations currently possess,

in the application of their own expertise in this new arena.

As discussed in this white paper, challenges that must be faced include:

1. creating the proper lexicon to use to translate contracts into code;

2. implementing that code in a clear, incentive-compatible fashion; and

3. developing the required monitoring and auditing tools.

These latter tools must all be able to leverage software and hardware oracles as providers

of objective truth for conditional outcomes of smart contracts, while ensuring that the

blockchain continues to provide the efficiencies in intermediation, redress and payments

that appear, initially, to be self-evident. We believe that when these challenges are met,

it will be possible to profitably assist and enable an enterprise, so that they are able to

take advantage of the ‘low-hanging fruit’ provided by efficiency gains without sacrificing

the ability to create, follow and maintain a trust relationship on the blockchain.

reward mechanism for computing ‘true’ blocks, in addition to the difficulty in both achieving such a high
degree of computing power and using that power to compute historical blocks quickly enough to create an
advantageous blockchain continuation, generally militates against the success probability of this attack
vector in Proof-of-Work blockchains such as Bitcoin. See e.g. the Bitcoin Developer Guide, accessed 15
October 2017.

13Recent decisions by the US Securities Exchange Commission (SEC) and the US Commodities Fu-
tures Trading Commission (CFTC) indicate that regulatory bodies are interpreting cryptocurrencies as
securities and/or commodities. See The Securities and Exchange Commission’s “Report of Investigation
Pursuant to Section 21(a) of the Securities Exchange Act of 1934: The DAO”, accessed 19 October 2017,
and LabCFTC, “A CFTC Primer on Virtual Currencies”, accessed 19 October 2017.

7

https://bitcoin.org/en/developer-guide
https://www.sec.gov/litigation/investreport/34-81207.pdf
https://www.sec.gov/litigation/investreport/34-81207.pdf
http://www.cftc.gov/idc/groups/public/documents/file/labcftc_primercurrencies100417.pdf

	Overview
	Validation: defining a contract on the blockchain
	Verification: executing a contract on the blockchain
	Auditing: following trust along the blockchain
	Concluding remarks

